CourseSource - Developmental Biology Learning Matrix

TOPIC	THEMES/SUPTOPICS	LEARNING GOALS	SAMPLE LEARNING OBJECTIVES
Early Embryonic	Gametogenesis	How do organisms maintain gamete populations?	Compare and contrast spermatogenesis and
Development			oogenesis.
			Draw and compare the functions of meiosis and
			mitosis.
	Fertilization	How does sperm entry trigger post-fertilization	Compare and contrast the fertilization process in
		processes in the egg/activation of oocyte?	mammals and plants.
	From zygote to gastrulation	How is the basic body plan formed?	Design experiments that would demonstrate the
			cell movements of gastrulation.
			Explain fertilization and cleavage, and justify why
			cleavage is an important step in development.
Morphogenesis	Cell differentiation	How does loss of totipotency and pluripotency	Design experiments that would demonstrate the
		lead to progressive specification in cells?	principles of cell fate, cell commitment
			(determination), and differentiation.
	Cell migration	How do differential cell adhesion, attraction, and	Design experiments that explain migration of
		repulsion result in morphogenetic changes?	neural crest cells.
	Cell death	How does apoptosis/cell death regulate growth,	Propose an experiment to determine if apoptosis
		shape and pattern?	is an important component of organ formation in
			a model system.
Patterning	Axis formation	How are the axes formed?	Evaluate experiments that demonstrate the
			establishment and patterning of axes in embryos.
			Explain how Hox genes control patterning along
			the anterior-posterior axis and in many developing
			organs.
	Symmetry/Asymmetry	How do genetically identical, totipotent cells	Explain how Hox genes control patterning along
		change into daughter cells with restricted	the anterior-posterior axis in different developing
		potency, fate, properties and behaviors?	organs.
			Design experiments that would demonstrate the
			principles of cell fate, cell commitment
			(determination), and differentiation.
	Growth control	How does cell cycle regulation control cell size,	Draw and compare the functions of meiosis and
		growth, shape and pattern?	mitosis.
	Spatial-temporal correlation	How do progressive, stepwise processes	Compare how vertebrates and invertebrates
		contribute to embryo complexity?	become segmented or divided into repeating
			units.

Organogenesis	Growth control	How do extracellular factors control organ and	Predict the outcome of a mutation that inhibits
		tissue growth?	Frizzled (Wnt receptor) v. nCAMs
	Symmetry/Asymmetry	How does asymmetry arise and contribute to	Describe the mechanism whereby physical or
		complexity? (localized determinants, cilia	chemical signals are used as an asymmetrical
		directional movement, etc.)	developmental trigger in plant or animal cells.
	Cell determination v. Cell	What roles do cell determination and cell	Predict the lineage outcome (heart or tail) of
	specification	specification play in organogenesis?	transplanting mesodermal cell populations from
			anterior heart fields to posterior presomitic tail
			bud.
	Tissue organization	How do morphogen gradients regulate tissue	Describe the mechanism whereby physical or
		organization?	chemical signals are used as a developmental
			trigger in plant or animal cells and tissues.
		How do differential cell adhesion, attraction and	Interpret the effects of lateral inhibition in
		repulsion, and ECM regulate tissue organization?	establishing neural fates.
			Explain why neural crest cells migrate across a
			specific part of the somite?
	Regeneration	How do developmental processes affect tissue	Compare and contrast muscle regeneration and
L		homeostasis and restoration?	myogenesis.
Signaling	Intracellular	How does the intracellular communication	Compare the roles of different transmembrane
		regulate gene transcription, cell polarity, shape	signaling pathways in development.
		and fate?	
		How does differential gene expression mediate	Explain how Hox genes control patterning along
		progressive acquisition of cell fate?	the anterior-posterior axis and in many developing
			organs.
			Explain how proliferative signals moderate
			transcription factor activity and subsequently lead
			to lockdown of fate.
	Extracellular	How do induction mechanisms and pathways	Compare the roles of different transmembrane
		influence cell fate?	signaling pathways in development.
		How do mechanical constraints and dynamics	Predict changes (or not) in development taken
		influence cell behavior, tissue and organ	place in microgravity environment.
		formation?	
Gene Networks	Gene expression regulation	How does the control of gene regulation	Predict different mechanisms that could be
		contribute to development?	responsible for control of gene expression in
			development.
		How do genomic and epigenetic changes modify	Explain roles heterochromatin serves during
		the transcriptome of a cell?	development (e.g. Methylation on MyoD's ability
			to induce the myogenic program in a non-muscle

			cell). What changes in chromatin prime a cell to respond to later signals?
		How do feedback loops affect multiple levels of gene regulation?	Describe experiments that test the idea that floral homeotic gene (or ABCE gene) expression ensures the development of floral organs in the correct number, type, and precise spatial arrangement.
		How do differences in regulation of gene expression explain the different cell types?	Propose a mechanism that may explain differences in cell type behavior as a result of different gene expression (e.g. In time or site).
		How do differences in regulation of gene expression explain the formation of atypical cells, tissue, organs and structures?	Provide examples of how overexpression of an mRNA affects: 1) axis formation; 2) cell differentiation; 3) tissue formation.
Comparative Development and Evolution	Comparative embryology	How does comparison between species explain the emergence of new features?	Propose a study of different species that can inform us about processes that led to disappearance or appearance of specific features (e.g. Loss of tail).
	Conservation of developmental processes	How do changes in expression patterns of existing genes, or genetic modifications of existing signaling pathways result in new phenotypes?	List a few genes that are found across the phyla and propose mechanisms that allowed them to form different phenotypes.
	Diversity	How do differences in developmental processes explain determinate versus indeterminate growers?	Propose multiple mechanisms by which indeterminate (e.g. eel) and determinate (e.g. guppy) growers may differ in their developmental processes.
		How does the environment contribute to organismal diversity?	Explain the "organizational-activation" theory of steroid hormone action on development. Use two specific examples that lead to "masculinization" or "feminization" of structures in an organism.
			Predict how factors such as temperature could be operative in phenotypic diversity within species (e.g. Turtle).
Experimental Approaches	Methods and tools	How do the methods and tools of developmental biology help us understand cause and effect relationships during embryogenesis? (correlation, gain of function and loss of function; molecular, cellular, tissue, organ)	Design an experiment to detect the identification and/or position of potential stem cells in a tissue that is known to renew itself (e.g. skin, intestinal epithelium). Include positive and negative controls (one of each) that you would perform and the purpose of each control.

Experimental	Methods and tools (cont.)		Given an article about the use of specific reagents
Approaches			in a developing organism and resulting
(cont.)			phenotype(s), propose and explain potential
			mechanisms (e.g. induction, gene knockout) and
			give other examples using the same mechanisms.
	Organisms	How do different organisms help us understand	Explain how studying other species inform us
		development? And what are their strengths and	about differences in developmental process that
		limitations?	led some organisms to preserve certain
			characteristics and others to lose them?
			Design a fate mapping experiment in an organism
			after learning how it is done in a different one.

Bloom's cognitive levels:

1. *Remember:* arrange, define, duplicate, label, list, memorize, name, order, recognize, relate, recall, repeat, reproduce state.

2. Comprehend: classify, describe, discuss, explain, express, identify, indicate, locate, recognize, report, restate, review, select, translate.

3. Apply: apply, choose, demonstrate, dramatize, employ, illustrate, interpret, operate, practice, schedule, sketch, solve, use, write.

4. Analyze: analyze, appraise, calculate, categorize, compare, contrast, criticize, differentiate, discriminate, distinguish, examine, experiment, question, test.

5. Evaluate: appraise, argue, assess, defend, estimate, judge, predict, rate, select, support, value, evaluate.

6. Create: compose, construct, create, design, develop, formulate, manage, organize, plan, prepare, propose, set up, write.